A Comparative Evaluation of Drops versus Atomized Administration of Intranasal Ketamine for the Procedural Sedation of Young Uncooperative Pediatric Dental Patients: A Prospective Crossover Trial

Pandey RK * / Bahetwar SK ** / Saksena AK *** / Girish Chandra ****

Objective: The objective of this study was to compare and evaluate the efficacy and safety of drops and atomized administration of intranasal ketamine (INK) in terms of behavioral response for agent acceptance during administration and for agent efficacy and safety for the sedation of young uncooperative pediatric dental patients. Study design: Thirty Four uncooperative ASA grade-I children, requiring dental treatment were randomly assigned to receive INK as drops and atomized spray in one of the subsequent visit. This was a two stage cross-over trial and each child received INK by both modes of administration. The vital signs were monitored continuously during each visit. Results: A statistically significant difference in patients acceptance (P<0.0001) was observed in the atomized administration when compared to drops administration for the procedural event of drug administration. Moreover, there were also significant differences (P<0.05) between onset of sedation and recovery time between two groups. All the vital signs were within normal physiological limits and there were no significant adverse effects in either group. Conclusions: INK is safe and effective by either mode of intranasal (IN) drug administration for moderate sedation in facilitating dental care for anxious and uncooperative pediatric dental patients. Moreover, INK when administered with the mucosal atomization device, the acceptance of the drug was associated with less aversive reaction, rapid onset and recovery of sedation, as compared to the drop administration of the same agent.

Keywords: Moderate sedation, intranasal ketamine, intranasal drops and spray.

INTRODUCTION

The management of pain, anxiety and unwanted mobility in children undergoing various procedures, or procedural sedation and analgesia (PSA), has developed considerably during recent years and has substantially reduced the need of general anesthesia in both medical and dental practice. Moreover, researchers have concluded that PSA can be safely administered by non-anesthesiologists outside the operating room in which dental offices have been recognized as potential areas.

A number of drugs and various routes of administration (oral, submucosal, transmucosal, intramuscular, intravenous, rectal, etc.) have been used to this end for PSA in dental office, but each of the above routes has its own advantages and disadvantages. Recently, the IN route has gained momentum in the field of pediatric dental sedation due to its several significant advantages over other routes. Hence, a variety of sedative and analgesics including ketamine (K) have been tried intranasally for the procedural sedation of young, uncooperative pediatric dental patients. However, various authors have reported that the mode (drop and spray) of IN administration of drugs affects the efficacy. Thus, the present prospective crossover clinical trial was undertaken to compare and evaluate the efficacy and safety of ketamine when administered intranasally as a drop and atomized spray for sedation of young uncooperative pediatric dental patients.

METHOD

Thirty four healthy children (ASA type I) between the ages of 2-6 years for whom basic behavior modification technique were not successful in providing dental treatment...
Drops versus Atomized

Table 1. Behavior/Response to treatment (ease of treatment completion) rating scale

<table>
<thead>
<tr>
<th>SCORE</th>
<th>CLASSIFICATION</th>
<th>BEHAVIORAL SIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>EXCELLENT</td>
<td>Quiet and cooperative, treatment completed without difficulty</td>
</tr>
<tr>
<td>4</td>
<td>GOOD</td>
<td>Mild objections or whimpering but treatment not interrupted. Treatment completed without difficulty</td>
</tr>
<tr>
<td>3</td>
<td>FAIR</td>
<td>Crying with minimal disruption to treatment. Treatment completed with minimal difficulty</td>
</tr>
<tr>
<td>2</td>
<td>POOR</td>
<td>Struggling that interfered with operative procedures. Treatment completed with difficulty</td>
</tr>
<tr>
<td>1</td>
<td>PROHIBITIVE</td>
<td>Active resistance and crying, treatment cannot be rendered</td>
</tr>
</tbody>
</table>

'Satisfactory' session- response to treatment rating score of '4' or '5' through the first 30 minutes of the session
'Unsatisfactory' session- score less than '4' or '5' even in one reading during the first 30 minutes of the session

(Tables 1) and whose treatment necessitated the administration of local anesthetic injection were recruited into the study which was approved by Institutional Ethics Committee, Research Cell, CSM Medical University, Lucknow, India. Risk and benefits of the sedation followed by the pre-sedation instructions were explained to the parent/guardian at the initial examination appointment. Each parent/guardian was requested to fill a written consent form at the initial appointment. The inclusion criteria also required that they had no known hypersensitivity to K or any other medication likely to interfere with the study drug. A comprehensive pre-anesthetic assessment (including tonsil and adenoid assessment, mouth breathing, speech, hypo-nasality, snoring, airway and chest examination) were performed by a Professor of the Department of Anesthesiology, CSM Medical University, Lucknow, India.

This study was envisaged to compare and evaluate the efficacy and safety of K as drops and atomized spray given by IN route for sedation in pediatric dental patients while delivering dental treatment to uncooperative children. All the enrolled patients were given K (6mg/Kg) by both the modes (drops and atomized spray) on two different visits in a crossover manner. During each sedation session the children were evaluated for the behavior response during the administration of drug while after the administration of drugs, they were evaluated for the time of onset, depth of sedation, behavioral response during dental treatment, changes in vital signs, the oxygen saturation levels, adverse effects during and after the sedation sessions, recovery times and the overall success with sedation. However, rate of success of sedation with each regimen was the main outcome measured.

To deliver drugs by IN route, the quantity of drugs should be kept minimum. Hence, concentrated solution of the drug was used. K was not available in concentrated form hence it was manufactured by Kwality Pharmaceutical Ltd in the concentration of 100mg/ml on a special request to the company, for the purpose of this study. It was a crossover trial so all the patients received K through IN route by both modes—drops and atomized spray. The order in which they were administered was generated using an online randomization generator.

On the day of dental treatment, to obtain assurance of the children’s health they were re-evaluated by an anesthesiologist who was present throughout the procedure. The vital signs and the peripheral oxygen saturation levels were examined and recorded. All the dental procedures were carried out by the author himself. The treatment procedures for each patient were standardized in such a way that similar procedures were performed on both the visits. Half volume of the drug was administered into each nostril with the child in semi recumbent position or in parent’s lap using an insulin injection syringe without needle for drop method while mucosal atomizer device (MAD100, Mucosal Atomizer Device; Wolf Tory Medical, Inc Salt Lake City, UT) (Fig. 1) for atomized method. The child’s behavior during IN drug administration, as well as any possible complication includ-

Figure 1. MAD 100 Mucosal Atomizer (Wolf Tory Medical, Salt Lake City Utah)
ing burning sensation, coughing, sneezing, etc were care-
fully assessed and recorded. After the onset of sedations the
vital signs i.e. pulse rate, blood pressure, respiratory rate and
the oxygen saturation were recorded at regular interval of 5
minutes. All patients received injection of local anesthesia
(2% lignoacaine with 1:200000 adrenaline) either in the form
of nerve block or infiltrated locally. If the child became
uncooperative during the treatment procedure physical
restraints were applied by the dental assistant that includes
mouth prop, papoose board, manual hold or the combination
of the above. The use of physical restraints during the treat-
ment procedure was documented. The presences of any side
effects or complications (Eg vomiting, coughing, sneezing,
etc) were also recorded.

The Ohio State Behavioral Rating Scale (OSBRS) (Table
2), as described by Lochary and co-workers \(^{12}\) was employed
for the patient’s acceptance of drug administration. The
OSBRS uses a hierarchical scale labeled for observed
behavior as: (1) quit; (2) crying; (3) struggling; and (4) cry-
ing/struggling. The lowest OSBRS (most aversive behavior
displayed) was recorded for the procedural event of drug
administration.

The ease with which treatment could be completed and
the level of sedation were measured using separate 5 point
scales that was used in previous study conducted in the same
centre \(^{6,13,14,15}\). (Basically this rating scale is a mod-
ified from AAPD sedation record in our institution). The
above ratings were recorded at a regular interval of 5
minutes. Calibration involved rating of recorded video-
graphic segment of the sedation sessions conducted in this
centre, previously rated by a Professor in the Department of

\[\text{Table 2. Ohio State Behavioral Rating Scale (OSBRS) for patient's}
\text{acceptance of the drug during administration} \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crying and struggling (CS)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Struggling (S)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Crying (C)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Quiet (Q)</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Table 3. Sedation rating scale} \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NO SEDATION</td>
</tr>
<tr>
<td>2</td>
<td>MINIMAL</td>
</tr>
<tr>
<td>3</td>
<td>MODERATE</td>
</tr>
<tr>
<td>4</td>
<td>DEEP</td>
</tr>
<tr>
<td>5</td>
<td>GENERAL ANESTHESIA</td>
</tr>
</tbody>
</table>

`Adequate` sedation- sedation rating score of ‘2’ or ‘3’ through the
first 30 minutes of the session

`Inadequate` sedation- score other than ‘2’ or ‘3’ even in one read-
ing through the first 30 minutes of the session

After the completion of the treatment, patient was trans-
ferred in a quiet room for recovery. Once fully recovered,
the time required for complete recovery was recorded. The
vital signs were re-evaluated and the patient was discharged,
when the AAPD sedation guidelines for discharge were
met \(^{16}\) and an Aldrette score \(^{17}\) of 9 or greater was achieved.
The parent/guardian accompanying the child patient was
provided postoperative instructions and the emergency tele-
phone number and were contacted next day and enquired for
the presence of any adverse reactions.

The sedation session (treatment outcome) was considered
safe and ‘successful’ if: (1) response to treatment score of ‘4’
or ‘5’ (satisfactory) and sedation score of ‘2’ or ‘3’ (adequate
sedation) was obtained throughout the treatment, (2) physi-
ological parameter remained within 20% of baselines
values, (3) oxygen saturations remained at 90% or greater,
(4) physical restraints were not used during the dental pro-
cedure and (5) no major side effects were observed during
and after sedation sessions.

Statistical analysis

The effect of K on vital signs, oxygen saturation, onset
time of sedation and recovery time were compared by
Wilcoxon matched pairs test. The difference in the depth of
sedation, response/behavior during treatment and treatment
outcome between the two groups were analyzed by Fisher’s
exact test. A two-tailed (\(p<0.05\)) was considered to be statistically significant. All
analyses were performed on SPSS (version 15.0).

RESULTS

Total 34 children were enrolled (16 female and 18 male) for
this study who were treated with K by both the modes in two
separate visit in cross over fashion, thus, a total of 68 seda-
tion sessions were performed. The age of all subjects ranged
from 2-6 yrs with mean (± SD) of 4.44 ± 1.65 yrs and mean
(± SD) weight of 13.88 ± 4.26 kg. The results obtained have
been summarized in Table 4.

There was significant difference \((p<0.05)\) in the duration
required for the onset of sedation between the two groups.
When K was administered as atomized spray, the onset of
action was faster with a mean duration of 5.13 minutes,
while K had a slower onset with a mean duration of 5.79
minutes when administered with drops. Similarly, there was
significant differences in the duration required for the recov-
ery also. The mean recovery time in children sedated with
drops was found to be significantly \((p<0.05)\) longer as com-
pared to children sedated with atomizer. Thus, children
recovered faster when sedated with atomized K and slower
when sedated with drops K. Atomized K provided ‘ade-
quate’ depth of sedation during maximum number of

Figures and Tables

- **Figure 1.** Graph showing the comparison of onset and
 recovery time between the two groups.

- **Figure 2.** Graph showing the comparison of oxygen
 saturation between the two groups.

- **Table 4.** Summary of results obtained in the study.

Acknowledgements

This study was supported by a research grant from the
Pediatric Dentistry who was involved in this study and two
other studies conducted in the same centre. \(^{6,13,14,15}\)

References

 Approach to a Common Problem. Pediatr Dent. 30(3):
 214-219.
2. AAPD (2001) Sedation Guidelines for Discharge of Children
 from the Dental Office. Pediatr Dent. 23(6): 259-266.
 Mosby-Year Book, Inc., St. Louis, Missouri.
4. Fisher, et al. (1941) A statistical analysis of some
data on human tolerance and pharmacological
responses with special reference to the action of
5. Wilcoxon, F. (1945) Individual comparisons by ranking
 SPSS Inc., Chicago.
7. The Journal of Clinical Pediatric Dentistry, Volume 36, Number 1/2011

Further Reading

 Comparison of Atomized Spray and Drops. Pediatr Dent.
 32(3): 120-125.
sedation sessions (97.05%) and provided ‘satisfactory’ completion of treatment during 32 sedation session.

For the procedural event of the drug administration, the atomized group demonstrated a statistically significant reduction (P<0.0001) in aversive behaviors compared to drop administration when measured by the OSBRS. Thus, in this group acceptance of drug was better as compared to the group in which K was given by drop mode.

Wilcoxon matched pairs test was applied to evaluate the differences in means among each of the sets of the vital signs and oxygen saturation level recorded during each visit. The relative changes in the vital signs observed during treatment were statistically not significant on inter-group comparison. Those were within 20% of baseline values and hence the changes observed were considered clinically insignificant. Moreover, the oxygen saturation values remained above 90% during each sedation session.

Vomiting was the only adverse effect observed on four occasions with drops and twice with spray administration. It occurred after the completion of treatment session, thus, did not affect the delivery of the treatment.

The overall success rate (treatment outcome), was more successful with atomized K (94.11%) when compared to the drops K (85.29%). Thus, in the present study, the overall success rate of atomized INK was higher as compared to drops INK though this difference was not significant statistically.

DISCUSSION

Providing comprehensive oral care to fearful, uncooperative and uncontrollable pediatric dental patients can be unpleasant for all parties involved. Despite the dentist’s best effort to employ conventional technique, the behavioral management of challenging pediatric dental patients often requires preoperative pharmacological intervention for delivering dental care. Although, the practice of pediatric dentistry has changed considerably over the past several decades, the apprehension and fear of any procedure is still persisting in the child patient, thus, further advancement in both better drugs and technique might bring improvement in better behavior of the patients.

K, which has been in use since 1970, is often referred to as a dissociative agent causing a functional and electrophysiologic dissociation between the thalamoneocortical and limbic areas of the brain leading to “a trancelike cateleptic state characterized by profound analgesia and amnesia, with retention of protective airway reflexes, spontaneous respiration, and cardiopulmonary stability.” It is particularly well suited to pediatric procedures and provides better sedation with fewer respiratory complications than midazolam/fentanyl making a quite ideal agent for pediatric dental sedation. Moreover, several large studies document that it has a wide margin of safety. However, it has been used by few researchers for pediatric dental sedation, and hence, K was chosen for our study.

A survey of US advanced education programs in pediatric dentistry reported a rise in the use of IN administration of sedatives for the sedation of young, uncooperative pediatric dental patients. IN drugs have been deployed primarily in pediatric patients as a means of circumventing the need for injection or bitter tasting oral drugs in children especially in unwilling patients. Since, a simple and non invasive technique, IN administration has none of any potential side effects and complications such as inadvertent intravenous or arterial injection, nerve injury and infection associated with intramuscular injection. Moreover, absorption

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spray</th>
<th>Drops</th>
<th>'p' value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset of sedation (min) n=34</td>
<td>Mean</td>
<td>5.13±1.21</td>
<td>5.79±1.42</td>
</tr>
<tr>
<td>Adequate depth of sedation (n%)</td>
<td>Range</td>
<td>(4 – 8)</td>
<td>(5 – 8)</td>
</tr>
<tr>
<td>Ease of treatment completion ‘satisfactory’ session (n%)</td>
<td>Mean</td>
<td>33(97.05%)</td>
<td>31(91.17%)</td>
</tr>
<tr>
<td>Recovery time (min)</td>
<td>Range</td>
<td>38.36±3.29</td>
<td>39.98±3.18</td>
</tr>
<tr>
<td>Acceptance of drug administration</td>
<td>Number of sessions $</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Treatment outcome ‘successful’ session (n%)</td>
<td>Poor</td>
<td>2(5.9%)</td>
<td>15(44.1%)</td>
</tr>
<tr>
<td>Fair</td>
<td>2(5.9%)</td>
<td>8(23.5%)</td>
<td>2 test</td>
</tr>
<tr>
<td>Good</td>
<td>6(17.6%)</td>
<td>3(8.85)</td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>24(70%)</td>
<td>8(23.5%)</td>
<td></td>
</tr>
<tr>
<td>‘Unsuccessful’ session (n%)</td>
<td>Session completed with PR</td>
<td>32(94.11%)</td>
<td>29(85.29%)</td>
</tr>
<tr>
<td>Aborted session</td>
<td>Mean</td>
<td>1(2.94%)</td>
<td>3(8.82%)</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>(32 – 44)</td>
<td>(34 – 46)</td>
</tr>
<tr>
<td></td>
<td>‘p’ value</td>
<td>0.4275</td>
<td>0.0431</td>
</tr>
</tbody>
</table>

* n = 34, implies the number of sessions; $ recovery time calculated only from those children who were ‘adequately’ sedated throughout the session.

Table 4: Primary outcome measures of patients treated with two different groups
of IN drugs occurs directly into the central circulation, bypassing the entero-hepatic circulation.11

Various studies32-37 of IN administration of sedative especially midazolam have been reported in the literature in the field of pediatric dentistry. Though, clinical trials of INK are well documented in medicine18-40 its use in pediatric dentistry is not significantly reported. However, oral K has been used by various authors41-46 and they have reported promising results. Previously, various authors have used drops for the IN sedation of uncooperative pediatric dental patients with midazolam32,33,34 and K15 but more recently use of an atomizer for intranasal administration has become more popular.47-51 Various authors52,53 have reported improved patients tolerance to spray administration using an atomizer over using drops. Hence, this study was undertaken to compare and evaluate the efficacy and safety of INK as drops and spray for the procedural sedation of young, uncooperative pediatric dental patients as a behavior management technique for providing comprehensive oral care to these patients.

Result of our study indicated that, although the INK when administered as drops or atomized both are safe and effective for providing PSA in pediatric dental patient, there are significant difference in patient acceptance, onset of sedation and recovery time between these two modes of administration. INK when administered through MAD provided better patient acceptance with rapid onset and recovery of sedation with higher overall success rate.

Emergency reactions are well established such as the adverse effects of K; however these were not detected in any of our patients. Other workers also did not detect emergence reactions among child patients receiving either low dose intramuscular or oral K for pre-anesthetic sedation.54-56 Moreover, one study has demonstrated that the incidence of emergence reactions in children is lower than in adults patients, varying from 0 to 5% in the former, to > 30% in the later.57 In our study vomiting was the only adverse effect reported. It was observed on four occasions with drops and twice with spray administration. It is worthwhile to note that in all the cases vomiting occurred after the completion of treatment session, thus, it did not adversely affect the delivery of the treatment. Moreover, a detail enquiry from the parents revealed that these children had not followed the pre-procedural instruction regarding meal. Thus, the vomiting might be associated with the food consumed by the child patient before coming for the dental treatment.

For a pediatric dentist to perform a dental procedure successfully, three aspects in respect of PSA in dental office are crucial i.e onset, depth and recovery of sedation. An ideal agent and route would be which has quick onset of action, provides adequate depth of sedation and rapid recovery of sedation avoiding unnecessary stay of the child in the dental clinic. The findings of present study using a new commercially available atomizer (MAD) showed rapid onset and recovery of sedation, adequate depth and overall success rate of sedation in addition to the better patient tolerance in larger number of patients as compared to the IN drops mode of administration. This makes atomized spray of INK, a quite ideal agent for PSA for management of young uncooperative pediatric dental patients in dental office.

CONCLUSION

Based on this study it can be concluded that INK with either mode of administration provides good sedation and represents a safe and effective pharmacological technique for procedural sedation of young, uncooperative pediatric dental patients. However, use of MAD for the administration of INK provides better patient acceptance, rapid onset and recovery of sedation and higher overall success rate for procedural sedation in such patients.

ACKNOWLEDGMENTS

We sincerely acknowledge m/s 1) “Kwality Pharmaceuticals (P) Ltd, Amritsar India” for specially preparing and providing Ketamine 100mg/ml for this study. 2) “Wolf Tory Medical, inc Salt Lake City Utah,84107 Cc to Sandor Medicaihs Pvt Ltd Hyderabad (India)” for providing MAD100 for this study. 3) MPS. Negi, Statistical consultant, Institute for Data Computing & Training, Jankipuram, Lucknow 226021 for statistical analysis.

REFERENCES